VÝPOČET SCHODIŠTOVÉHO PRVKU je téma, které bylo inspirací k napsání tohoto článku. Pro výpočet schodů je potřeba znát několik důležitých parametrů – konstrukční výšku podlaží, výšku stupně a typ schodiště.
Schodiště polopatě
Schodiště je vertikální komunikace mezi různými výškovými úrovněmi. Podle umístění jsou schodiště buď uvnitř budovy (schodiště vnitřní), nebo jsou vně budovy a přímo s ní souvisejí (schodiště vnější), popřípadě jsou samostatné v terénu, kde překonávají výškové rozdíly (schodiště terénní).
Schodiště je výrazný prvek staveb, na který je kladen důraz jak z hlediska funkčnosti, tak z hlediska estetiky. A to jsou v mnoha případech požadavky vesměs protichůdné. Zvláště když k nim přičteme i požadavek ekonomický, na co nejnižší náklady na bydlení. Ve většině případů chceme, aby schodiště bylo pevné, odolné vůči mechanickému namáhání a pohodlné, ale zároveň estetické, nezabíralo mnoho cenného prostoru stavby a pokud možno nestálo mnoho peněz. První skupině požadavků odpovídají schodiště betonová s mohutnou nosnou, většinou železobetonovou konstrukcí, popřípadě konstrukcí svařovanou na místě. Druhé skupině požadavků lépe vyhovují lehké konstrukce, často v nezvyklých kombinacích materiálů, tvořená jednotlivými prvky montovanými na místě. Je na každém stavebníkovi, jakou cestou se vydá a kterou kombinaci zvolí.
Při navrhování schodišť se vychází především z funkčních požadavků. Většina rozměrů je ovlivněná typem budovy, provozem, ale i architektonickými požadavky. U novostaveb bývá návrh schodiště mnohem jednodušší než u rekonstrukcí, kde rozhodujícím (limitujícím) prvkem je schodišťový prostor.
Prvním předpokladem pro správný návrh schodiště je promyšlení a nakreslení jeho tvaru.
Optimální výška schodu je od 15 do 18 cm. Pamatujte, že pro dospělého zdravého člověka není problém vysoký schod, ale pro děti a starší nebo hendikepované to již problém může být. Šířka stupňů bývá kolem 30 cm. Běžný sklon schodišťového ramene se pohybuje v rozmezí od 25° do 35° (odpovídá výšce stupně od 15 do 18 cm). Šířka ramene je u rodinných domů minimálně 90 cm, ale vhodnější je 100 cm.
Rozeznáváme několik druhů schodišť: jednoramenné, dvouramenné, točité, lomené, zavěšené, mlynářské. Typů je hodně, ale mezi nejčastější patří dvouramenná schodiště, protože jsou velmi jednoduchá.
Schodiště se vyrábí z různých materiálů: železobeton, vyztužený pórobeton, dřevo, nebo v dřívějších dobách i plné cihly. Povrch schodiště může být například z keramiky, ze dřeva nebo z teraca.
Podle schodišťových ramen rozeznáváme schodiště:
rampové – sklon 10° až 20° s výškou stupňů 80 až 130 mm;
mírné – sklon 20° až 25° s výškou stupňů 130 až 150 mm;
běžné – sklon 25°až 35° s výškou stupňů 150 až 180 mm;
strmé – sklon 35° až 45° s výškou stupňů 180 až 200 mm;
Ve svém příspěvku VÝPOČET SCHODŮ se k tomuto tématu vyjádřil uživatel FRANTIŠEK ROZMANIT.
Jak spočítám počet a výšku schodů.Stavební výška je 138 cm a délka je 418 cm.Jedná se o venkovní schodiště.Děkuji F.Rozmanit.
Svou reakci k tomuto příspěvku přidal uživatel Honza.
Vážený pane. Záleží na tom, jak chcete mít jednotlivý schod vysoký. Většinou se dělá od 13 do 17cm. Stavební výšku máte 138cm tzn. 138 děleno výškou schodu. V případě výšky schodu 15cm je počet 138 děleno 15 to je 9,2. 9,2 schodu je samozřejmě nesmysl, musí vyjít na celé číslo, v tomto případě 9. Z tohoto se zpětně spočítá výška. Tj. 138 děleno 9 a to je 15,33cm. Pochopitelně je možno si rozměry určit jinak,ale potom budou schody na chůzi nepříjemné.
S pozdravem Honza.
Pohodlné schodiště by mělo mít sklon 25–35°. Projektanti a architekti mají s touto činností bohatou zkušenost, schodiště je jedna ze základních věcí v dispozici domu a musí se spočítat velmi přesně. Dodatečné korekce jsou v případě schodiště velice komplikované.
Základní výpočet schodiště
Prostor pro schodiště – v případě návrhu nového domu je výhodou možná změna dispozice tak, aby schodiště bylo ideální i ve vztahu k ostatním místnostem. V rekonstrukcích se někdy dostáváme k hodnotám na hraně pohodlnosti či použitelnosti dle dostupného prostoru.
Určíme si konstrukční výšku – je to výška, kterou musí schodiště překonat od čisté podlahy nástupního podlaží k čisté podlaze výstupního podlaží (zkratka KV).
Prostým matematickým dělením zjistíme, kolik je nutno mít stupňů k překonání výšky (zkratka N) a jak tento stupeň bude vysoký (zkratka V). Všechny stupně na schodišti musí mít stejnou výšku.
Šířka stupně (zkratka Š) se dopočítá ze vztahu Š = 630 – 2 x V mm (možno snížit až na 600, odvozeno od délky lidského kroku) a spočítáme i sklon schodiště.
Délku ramene (zkratka D) vypočítáme (například 8 výšek znamená 7 šířek).
Vzorce pro výpočty schodů:
1) Počet stupňů N = KV : V
2) Výška stupně V = KV : N
3) Šířka stupně Š = 630 – 2 x V
4) Délka schodišťového ramene – jednoramenné L = Š x (N – 1)
5) Délka schodišťového ramene – dvouramenné L = Š x (N : 2 – 1)
6) Sklon schodiště a = arctg V : Š
7) Délka ramene D = Š x N
8) Podchodná výška ramene Hp = 1 500 + (750 : cos a)
9) Průchodná výška ramene Hpr = 750 + (1 500 x cos a) (hodnota musí být vyšší než 1 900 mm)
Ve svém příspěvku VÝPOČET SCHODŮ se k tomuto tématu vyjádřil uživatel FRANTIŠEK ROZMANIT.
Jak spočítám počet a výšku schodů.Stavební výška je 138 cm a délka je 418 cm.Jedná se o venkovní schodiště.Děkuji F.Rozmanit.
Svou reakci k tomuto příspěvku přidal uživatel Honza.
Ještě k tomu výpočtu schodů. Na délku schodiště 418cm vychází na 9 schodů délka nášlapu cca 46cm, což je moc. Toto je potřeba řešit nahoře schodiště podestou. Měla by být dlouhá cca 1,5m, potom délka nášlapu bude vycházet kolem 30cm, což je už přijatelné. Toto je opět z důvodu pohodlnější chůze po schodech.
S pozdravem Honza.
Dřevomorka domácí (Serpula lacrymans) je dřevokazná houba, nejnebezpečnější škůdce na zabudovaném dřevě, která k nám byla pravděpodobně zavlečena lodním nákladem dřeva z Asie. Žije především v přízemích a sklepích, na záklopech a trámových prvcích. Napadá zejména starší dřevo jehličnanů. Vhodnými podmínkami pro její vznik a rozvoj je přítomnost dřeva vystaveného delší dobu vlhkosti už na hranici asi 20 % (běžná přirozená vlhkost dřeva by měla být v rozmezí max. 14–18 %), kde je současně přítmí, malý nebo žádný pohyb vzduchu, teplota nepřesahující 30°C. Jako jediná dřevokazná houba přežívá dřevomorka i za nižší vlhkosti dřeva, ostatní houby při poklesu vlhkosti dřeva na méně než asi 20 % hynou. Nebezpečnost dřevomorky však spočívá především v její schopnosti prorůstat i přilehlé zdivo speciálními provazci, tzv. rizomorfami. Těmi si tato odolná houba přivádí ke dřevu potřebnou vlhkost i ze vzdálenosti mnoha metrů. Rizomorfy prorůstají podél izolací, elektrického vedení, ale také poruchami zdiva, řídkým betonem, pod omítkami i zdmi a také podložím. Takto dřevomorka využívá v okolí například poškozených odpadů, míst zavlhčených zatékáním – obecně nejrozmanitějších zdrojů vlhkosti. Dřevomorka v místech, kde je přítmí a malý pohyb vzduchu bez větších výkyvů teplot, vytváří povrchové vatovité povlaky (mycelium) šedobílé barvy, při vhodných podmínkách vystavuje nepravidelné rozlité plodnice okrové až červenohnědé barvy s bílými okraji. Tyto plodnice chrlí do vzduchu velké množství výtrusů – sporů. Okolní prostředí je tak silně exponováno potenciální nákazou veškerého dřeva novými ložisky dřevomorky. Dosud nezasažené dřevo je napadáno rovněž postupným prorůstáním rizomorfů okolím původního ložiska nákazy. Najdeme-li dřevomorku ve stadiu plodnic, lze předpokládat, že její výskyt není omezen jen na samotné dřevo a nejblíže přilehlá místa, ale s vysokou pravděpodobností jde o rozsáhlé prorůstání okolním prostředím a dřevomorka má v této fázi už propojení na zdroje vlhkosti, což znamená, že samotná vlhkost dřeva už nezávisí na vlhkosti okolí a dřevomorka je schopna žít vlastním životem i po odeznění původních příčin jejího vzniku. Napadené dřevo podléhá zkáze v několika postupných etapách. První fází rozeznatelnou zběžným ohledáním je charakteristické čokoládově hnědé zbarvení dřeva. Ačkoli již před touto fázi je dřevo aktivně napadeno, nelze bez laboratorních zkoušek běžně rozeznat probíhající proces až do jeho zabarvení, pouze podle vyšší vlhkosti dřeva lze usuzovat na vznikající potíže. Před fází zabarvení se nachází okamžik, kdy dřevo přes počínající proces prorůstání škůdcem má stále svou mechanickou pevnost a její hodnoty nejsou sníženy pod hranici funkční pevnosti. Při probíhajícím zbarvení dřev
Před montáží sádrokartonových stropů je potřeba prověřit půdorysné rozmístění instalací a vzduchotechniky v dutině podhledu s ohledem na možnost kotvení podhledu. Dále zkontrolovat umístění vývodů elektroinstalace v ploše podhledu a elektroinstalačních skříněk v dutině podhledu a v obvodových stěnách. Zhotovit výškové vytyčení podhledu pomocí laseru nebo značkovací šňůry. Stanovit úroveň konstrukce, přičemž se musí zohlednit tloušťka opláštění. Musí se prověřit podmínky pro požární odolnost některých podhledů, nebo zda nebude odporovat výška uvažovaných svítidel s výškou dutiny v místě, kde se budou svítidla nacházet. Je nutné zkontrolovat i výšku a polohu zabudovaných konstrukcí v dutině podhledu a členění navazujících obvodových konstrukcí (výška nadpraží oken a dveří, nadsvětlíky, výustky vzduchotechniky a podobně). Vytyčit a označit polohu případných revizních dvířek nebo revizních vstupů. V neposlední řadě rozměřit místa na upevnění nosných závěsů podhledů s ohledem na povahu nosné konstrukce stropu a dovolené rozestupy závěsů a nosných profilů podhledu.
Na UD profily se před osazením aplikují samolepicí napojovací těsnění. Potom se připevní k následným vertikálním konstrukcím pomocí plastových natloukacích hmoždinek nebo jiných vhodných připevňovacích prostředků dle druhu obvodových konstrukcí. V případě, že je obvodovou konstrukcí sádrokartonová příčka, lze na ni připevnit UD profil rychlošrouby TN, ale pouze v místech, kde pod sádrokartonem probíhají uchytávací CW profily příčky. K příčkám opláštěným sádrokartonovými nebo sádrovláknitými deskami se dá připevnit UD profil pomocí šroubů do opláštění příčky, nezávisle na poloze CW profilů příčky. V případě potřeby dilatační či úplné nezávislosti podhledu od okolních svislých konstrukcí se UD profily na obvodové stěny podhledu nemontují. Závěsy do nosného stropu je třeba ukotvit vhodnými upevňovacími prostředky. Do betonových nosných stropů se používají ocelové hmoždinky. Na nosné kotvení podhledů k nosnému stropu nesmějí být použity plastové hmoždinky. Na kotvení podhledů do dřevěných trámů lze použít šrouby do svislých závěsů s plochou hlavou (FN).
Montážní CD profily (tedy profily, ke kterým se montují desky opláštění) jsou připevněny k nosnému stropu prostřednictvím přímých závěsů nebo stavebních třmenů. Spoj profil – závěs je upevněn dvojicí šroubů do plechu. Spoj závěs – nosný strop lze zhotovit buď jednou ocelovou hmoždinkou do betonového nosného stropu, nebo dvěma šrouby typu FN do dřevěných nosných prvků stropu.
Zavěšený podhled na křížovém roštu se montuje na nosné CD profily, to znamená, že profily tvořící horní vrstvu křížo
Voda ze studny určená do domácností musí splňovat požadavky na kvalitu pitné vody vycházející z vyhlášky Ministerstva zdravotnictví ČR. Ve skutečnosti jen málokdy podzemní vody ve studně zcela splňují tyto podmínky. Obvykle problémem je, že podzemní vody obsahují vysoký obsah železa a manganu, jsou mikrobiologicky kontaminované, nebo je voda tvrdá či má zvýšený obsah dusičnanů. Tyto problémy se dají vyřešit tím, že se pořídí speciální zařízení, které upravuje kvalitu vody.
K odstranění železa a manganu z vody se používá automatický tlakový filtr. Před tímto filtrem je předřazena dávkovací stanice, která má na starosti chemickou úpravu surové vody a její hygienické parametry. Voda pak proudí přes vrstvy speciální náplně, která účinně odfiltruje všechny formy železa a manganu. Celý proces řídí jednotka s displejem, takže je možné kontrolovat, jestli jednotka funguje. Cena tohoto zařízení se pohybuje kolem 30 000 Kč.
Bakterie a mikroorganismy jsou všude kolem nás a podzemní vody nejsou výjimkou, a proto je potřeba vodu dezinfikovat pomocí velmi malých dávek chlóru, tím se zamezí množení bakterií ve vodovodní síti. Dezinfekce navíc pomáhá zamezit usazování mikroorganismů a bakterií ve vnitřních stěnách potrubí. Chlór nedávkuje majitel studny sám, má k tomu dávkovací stanici, která zachytí signál z vodoměru a pak nadávkuje potřebné množství chlóru přímo do tlakového rozvodu vody. Tato stanice se instaluje na hlavní přívod vody. Cena tohoto přístroje se pohybuje kolem 15 000 Kč.
Stejně jako zbavit vodu mikroorganismů, manganu a železa je potřeba i vodu změkčit. Podzemní voda obsahu velké množství nejrůznějších chemických prvků a jejich sloučenin. Hodnota těchto prvků se běžně pohybuje kolem 0,5 %. Pokud je ve vodě větší množství vápníku, hořčíku a jejich sloučenin dochází k tvrdosti vody. Pokud se množství těchto prvků a jejich sloučenin ve vodě neřeší, dochází k jejich usazování (známé jako vodní kámen), a to snižuje výkon všech přístrojů, kterými voda prochází (čerpadla, kotle, ohřívače vody) a způsobují na nich škodu, protože jim zanášejí rozvody. Pokud má teda voda tvrdost vyšší než 5 °pH, doporučuje se pořídit úpravnu na změkčení vody. Latexovou technologií jsou odstraněny soli vápníku a hořčíku. Cena tohoto zařízení začíná na 20 000 Kč.
Stejně tak je nezbytné odstranit dusičnany a dusitany pomocí speciálních náplní, které podle potřeby automaticky regenerují roztokem soli. Zatímco tvrdá voda může způsobit problémy zařízením, dusičnany a dusitany způsobují zdravotní problémy lidem. K odstranění dusičnanů se užívá řídící jednotka skládající se ze sklolaminátové tlakové nádoby s náplní a zásobní nádrže pro roztok soli. Cena zařízení se pohybuje kolem 35 000 Kč.
Točité schodiště (stejně tak vřetenové schodiště) patří mezi takzvaná křivočará schodiště, která obvykle zabírají velmi málo místa oproti ostatním typům schodů. Působí velmi elegantně, vzdušně a bývají ozdobou obytných či reprezentativních prostor. Pro svou nenáročnost na prostor se točité schody používají i jako vedlejší či úniková komunikační cesta. Vhodnou kombinací materiálů lze vytvořit jak luxusní schodiště s ambicemi na designový prvek, tak i funkční venkovní bezúdržbový komunikační prostor.
Uvedené schodiště patří mezi oblouková schodiště a podle půdorysného tvaru se jim všeobecně říká křivočará schodiště. Do této skupiny patří točité, kruhové, spirálové nebo vřetenové schody. Rozdíly mezi nimi nejsou příliš velké, někdy se jedná pouze o synonyma. Například vřetenové schody jsou charakteristické tím, že vždy vycházejí ze středového sloupu. Prvky středového sloupu mohou mít rozličný tvar, není nutno se omezit pouze na rotační trubku. Některá oblouková schodiště žádný středový sloup mít nemusí.
Délka kroků ve spirále schodiště by neměla být menší než 80 cm. Šířka stupně ve střední části by neměla být menší než 20–25 cm a v nejširší části ne více než 40 cm.
Pro výpočet schodiště je nutné znát tyto základní údaje: výška schodiště, vnější průměr, vnitřní průměr (těleso, do kterého se budou stupně zapouštět), počet schodů, tloušťka stupnice, úhel natočení.
Pro tento typ schodiště je typický středový sloup, ke kterému jsou připevněny, případně na něj mohou být navlečeny, jednotlivé schodišťové stupně. Jedná se o samonosné, tedy nepodporované schodiště, jehož schodnice obvykle nejsou z vnější strany kryty schodnicí.
Obloukové (točité) schodiště
Vyznačuje se tím, že nemá výše zmiňovaný středový sloup, naopak má z obou stran bočnici. Jak už název napovídá, jeho tvar je obloukový, obvykle půdorys tvoří půlkruh, respektive písmeno „C“. Nicméně může mít i tvar kruhu (kruhové schodiště).
Spirálové schodiště
Jedná se v podstatě o další variaci na křivočaré schody. Svůj název dostalo podle tvaru, tedy spirály. Obvykle je takto nazýváno schodiště, které se kolem své osy obtočí o více než 360 stupňů, nicméně není to pravidlem. Za spirálové schody bývají označovány jak vřetenové schody, tak obloukové schody.
Elektrické topení může být napájeno centralizovanou cirkulací vzduchu z elektrických pecí nebo topením v každé místnosti. Vytápění se může skládat z elektrických podlahových ohřívačů, elektrických nástěnných ohřívačů, elektrického sálavého topení, nebo elektrického prostorového topidla. Je také možné použít elektrický akumulační systém, aby bylo zabráněno vytápění v době drahého tarifu dodávky energie.
Elektrické pece
Elektrické pece mají dražší provoz, než jiné elektrické vytápění, protože jejich potrubí způsobuje ztráty, při distribuci teplého vzduchu do celého domu a tím zvyšuje spotřebu elektrické energie (tyto ztráty jsou společné pro všechny topné systémy, které používají pro distribuci kanály). Ohřátý vzduch je dodáván do celého domu prostřednictvím potrubních kanálů a do pece se vrací vratným potrubím. Pokud tyto kanály prochází přes nevytápěné prostory, dochází k tepelným ztrátám.
Ventilátory v elektrických pecích víří vzduch nad skupinou elektrických odporových cívek, které se nazývají topné prvky, a každý z nich má obvykle hodnotu kolem pěti kilowattů. Tyto topné prvky se aktivují ve fázích, aby bylo zabráněno přetížení elektrického systému v domácnosti. Přehřátí zabraňuje vestavěný termostat, nazývaný také jako omezovač. Tento termostat vypne pec, pokud ventilátor selže, nebo pokud znečištěný filtr blokuje proudění vzduchu.
Stejně jako u jiných pecí je důležité čistit nebo vyměnit filtr dle doporučení výrobcem, s cílem udržet systém v co nejlepší účinnosti.
Elektrické kotle
Elektrokotel je určen svou konstrukcí do topných teplovodních systémů s nuceným oběhem vody. Lze jej montovat do systémů ústředních a etážových vytápění s nuceným oběhem s otevřeným nebo uzavřeným systémem. Jedná se o ekologicky čistý provoz bez nároků na odvod spalin. Bezobslužný provoz umožňuje vnější regulátor případně jiný vnější regulační nebo ovládací prvek, nebo lze využít jednoduchý ekvitermní regulátor nebo prostorový regulátor teploty, implantovaný přímo v řídicí automatice, udržující předem nastavenou teplotu ve vybrané místnosti. Elektrokotel lze využít jako univerzální zdroj tepla pro vytápění v bytech, malých rodinných domcích, rekreačních objektech i jako alternativní zdroj v případě použití jiného hlavního zdroje vytápění a přípravy teplé vody i na přechodné období, například pro tepelná čerpadla, akumulační systémy nebo v již dříve instalovaných etážových a ústředních systémech apod. Pro vyšší výkony lze kotle spojovat do kaskád.
Hnojiva se používají ke zlepšení růstu rostlin. Neustálým pěstováním hospodářských plodin na omezeném prostoru dochází velmi rychle k vyčerpání živin z půdy a ke snížení její úrodnosti, proto se stalo téměř nutností dodávat do půdy živiny pomocí různých hnojiv. Hnojiv existuje celá řada od jednoduchých, obsahujících pouze jeden prvek, přes dvojitá až po trojitá, nazývána také plná hnojiva. Plná hnojiva jsou kombinací všech tří základních prvků potřebných k růstu – dusíku (N), fosforu (P) a draslíku (K). Z latinských názvů těchto tří prvků vzniklo i často používané označení pro plná hnojiva – NPK.
Hnojiva NPK kombinují dusík, fosfor a draslík, tedy základní prvky podporující zdravý růst rostlin. Hnojiva NPK se používají k základnímu hnojení půdy na začátku vegetace, to znamená ještě před výsadbou rostlin. Některé rostliny jsou velmi náročné na spotřebu těchto tří základních látek, proto jim mohou být dodány pomocí hnojiva NPK také v průběhu sezóny. Během sezóny se těmito přípravky často hnojí i rostliny s krátkou vegetační dobou. Pro podzimní hnojení jsou určeny speciální druhy hnojiva NPK. Předem připravená kombinace dusíku, fosforu a draslíku v těchto hnojivech je pro použití v jednotlivých ročních obdobích nesmírnou výhodou. Zahrádkářům tak odpadá starost s hledáním vhodného poměru těchto látek i se složitým mícháním. Zcela jednoduchá je i aplikace hnojiv NPK – připravené granule se zapraví do půdy.
Široká modelová nabídka motorových travních sekaček Honda uspokojí každého zákazníka, ať už se jedná o majitele malé předzahrádky, či o profesionála na údržbu veřejné zeleně. Dle libosti lze zvolit stupeň výbavy od jednoduché sekačky bez vlastního pojezdu až po sekačku s plynulou regulací rychlosti jízdy „Select Drive“, integrovaným mulčovacím systémem a „Roto-stopem“, poskytujícím komplexní bezpečnost a pohodu umožňující uživateli zastavit rotaci žacího nože bez nutnosti vypnutí motoru.
Originální motorové sekačky Honda se od běžných sekaček liší celou řadou vlastností a nových technických řešení:
SELECT Drive® – jedná se o poslední, důmyslnou kombinaci pojezdové převodovky a ergonomického ovládání rychlosti jízdy. Uživatel tak má možnost pomocí dlaní pohodlně a plynule ovládat rychlost jízdy. K přenosu síly od motoru dochází prostřednictvím kevlarového řemínku speciálního průřezu s dlouhou životností, který zamezuje nečekanému a skokovému zabírání, změna rychlosti jízdy je tak naprosto plynulá.
SMART Drive® – jde o systém důmyslné kombinace poslední verze pojezdové převodovky a ergonomického ovládání. Systém je primárně konstruován tak, aby měl uživatel možnost pomocí prstů pohodlně a plynule ovládat rychlost jízdy, čímž je zajištěna bezpečnější a přesnější rychlost sekání kolem stromů, plotů, zídek a květinových záhonů. Znamená to také konec poškození trávníku díky manévrování v místech, kde je nutné rychlost jízdy snížit.
Variable speed (hydrostatický tempomat) – při sekání se sekačka perfektně přizpůsobí vašemu pracovnímu tempu. Pro dokonalý výsledek správně zastřiženého trávníku je nutná možnost sekačku přesně nastavit tak, aby jednak odpovídala vašim pohybovým schopnostem a jednak vzhledu trávníku. Například možnost plynulého nastavení a automatického udržování rychlosti jízdy přesně na požadované úrovni v závislosti na povaze terénu, kvalitě trávníku, výšky střihu a podobně.
Roto-stop® disková třecí spojka nože – během vyprazdňování sběrného koše nebo při přejezdu sekačkou z místa na místo pomocí pojezdu umožňuje tento systém vypnout rotaci žacího nože, aniž by bylo nutné vypínat motor.
Elektrický startér – jednoduchý a pohodlný systém, který vám umožní motor sekačky nastartovat pouhým otočením klíčku zapalování jako v automobilu. S elektrickým startérem je vždy k dispozici samozřejmě i ruční reverzní startér.
Automatický sytič – všechny motorové sekačky Honda jsou vybaveny čtyřtaktními spalovacími motory Honda světové třídy, které se vyznačují, mimo jiné, spolehlivým startem a nenáročnou údržbou. V zájmu usnadnění startování jsou opatřeny automatickým sytičem a pracují na běžný, bezolovnatý, automobilový benzín.
Před zahájením montáže se ujistěte, že konstrukce krovu nevykazuje nepřiměřené odchylky rovinnosti. V případě zjištěných nerovností, je třeba tyto vyrovnat. Zjistěte případné odchylky od pravoúhlosti střechy, abyste mohli kladení panelů Izopir přizpůsobit konkrétnímu tvaru střechy. Proveďte montáž bednění. Je možno použít dřevěné palubky tam, kde bednění bude tvořit pohledovou část, nebo OSB desky či prkna tam, kde bednění bude kryto podhledem. Dbejte na správné ukotvení jednotlivých prvků a na zachování rovinnosti bednění. Čelní napojení prvků bednění na sraz se provádí zásadně na krokvi. Montáž Izopir panelů bez bednění je možná jen v případě, že je vzdálenost nosného systému krovu navržena tak, aby nedošlo k prošlápnutí panelů při dalších etapách montáže.
Na bednění instalujte parotěsnou vrstvu. Dbejte na správnou instalaci v souladu s doporučeními dodavatele. V případě instalace bez bednění se bude parotěsná vrstva instalovat dodatečně zespod v rámci montáže podhledových konstrukcí.
Instalujte zakládací hranol nebo fošnu. Tento prvek zajistí stabilitu Izopir panelů. Může být instalován na okapové hraně, nebo v případě nezatepleného přesahu střechy tak, aby bylo zajištěno navázání izolace fasády na izolaci střechy. Jeho výška musí přesně odpovídat výšce panelů. Pokud je tento prvek instalován na okapové hraně, je překryt plechovou okapnicí, na které bude ukončena doplňková hydroizolační vrstva. Zakládací hranol nebo fošnu ukotvěte do nosné konstrukce krovu vruty odpovídajících rozměrů.
Montáž Izopir panelů začněte od okapové hrany střechy zleva nebo zprava, delší hranou ve směru okapu. U panelů opatřených drážkou tuto v místě dotyku se zakládacím hranolem odřízněte. Osaďte celou spodní řadu panelů a zajistěte je proti posunu vždy jedním vrutem do každé krokve u okapové hrany. Následující řadu přesaďte a klaďte na vazbu. Jednotlivé panely pečlivě zasunujte do vyfrézovaných drážek a dbejte, aby se drážky při montáži nepoškodily. Jen tak bude dosaženo optimálních tepelně-technických parametrů. V případě potřeby je možné panely dělit ruční pilkou na dřevo. Spoje panelů přelepte páskou SP-AL.
Po osazení druhé řady panelů instalujte doplňkovou hydroizolační vrstvu DHV (například SATJAMFOL WI 135, nebo 170). Doplňkovou hydroizolační vrstvu je možno při instalaci zajistit proti posunu oboustrannou spojovací páskou SP-DS. Doplňkovou hydroizolační vrstvu ukončete na okapnici.
Osaďte kontralať odpovídající výšky a Izopir panely přikotvěte k nosné konstrukci krovu systémovými šrouby SDI odpovídající délky přes kontralať. Postup opakujte po celé ploše střechy. V hřebeni, nárožích a úžlabích je nutno panely seříznout tak, aby k sobě přesně dosedaly. V
Dům si zpravidla pořizujeme jen jednou za život. Jeho pořizovací cena mnohonásobně převyšuje cenu výrobků, u nichž si neváháme za to, že spotřebují méně energie, připlatit. U domů to již takovou samozřejmostí není, pečlivě zvažujeme návratnost každé zvýšené investice, která nám přináší úsporu budoucích provozních nákladů. Přitom jde obvykle ruku v ruce i se zvýšením kvality bydlení.
O energetické náročnosti domů se v současné době hodně mluví, mluvíme o domech energeticky úsporných, nízkoenergetických, pasivních, s téměř nulovou spotřebou energie. Obecně je vnímáme jako domy dobře zateplené, které potřebují méně energie na vytápění. Zateplení je však pouze jeden z faktorů ovlivňujících energetickou náročnost domu, vytápění je jen jedna položka výdajů za spotřebovanou energii na provoz domu. Chystáme-li se stavět či rekonstruovat dům, měli bychom se o jeho budoucí energetické nároky zajímat komplexně a včas, abychom později nebyli nemile překvapeni. Energetickou náročnost domu zásadně ovlivňuje již samotný koncept a návrh domu. Tedy v prvé řadě velikost domu a jeho tvar. Dům neúměrně velký vzhledem k počtu jeho obyvatel je již a priori energeticky neúsporný. Na zvýšených účtech za vytápění se podepíše i členitost domu, protože složitější tvar zvětšuje celkovou ochlazovanou plochu jeho „obálky“. Vikýře, arkýře, výklenky a jiné tvarové rozmanitosti tak mají negativní vliv na energetickou bilanci domu, a navíc i v samotné realizaci stavbu komplikují, přinášejí větší riziko závad, vzniku tepelných mostů a samozřejmě ji i prodražují. Naopak pozitivně může prospět orientace domu ke světovým stranám tak, aby dovolila do vytápění zapojit i sluneční paprsky pronikající do interiéru. V tomto případě hovoříme o pasivních tepelných ziscích. Orientace a velikost okenních otvorů ovlivní i spotřebu energie na osvětlení. O energetické náročnosti domu rozhoduje hlavně samotná konstrukce, zejména kvalita obvodových stěn, oken, podlah a střechy. Nezáleží ani tak na materiálu, ale na výsledných tepelně-izolačních vlastnostech jednotlivých prvků konstrukce a na těsnosti takzvané obálky domu. A v neposlední řadě bude záležet na vybavení technologiemi, především na zvoleném způsobu vytápění a větrání. Zajistit dostatečné větrání úsporných domů je mimořádně důležité, protože u dobře utěsněných domů nedochází k přirozené výměně čerstvého vzduchu netěsnostmi.
Pro každý nově postavený rodinný dům s podlahovou plochu nad 50 m2 a pro větší rekonstrukce musí být vypracován průkaz energetické náročnosti budovy (PENB), který vypracuje energetický specialista. Ten podle dané metodiky zařadí dům do určité kategorie od A do G. Stavební p
Průměrná spotřeba elektřiny v domácnosti se 2 až 3 členy, která elektřinou netopí ani neohřívá vodu či nenabíjí elektromobil, činí okolo 2 200 kWh za rok.
Pro zjištění přibližné spotřeby elektrické energie vaší domácnosti je třeba si odpovědět na několik základních otázek:
Kolik osob sdílí domácnost?
Jaká je rozloha vašeho bytu, domu?
Používáte elektřinu k vaření (indukční sporák, spotřeba spotřebičů)?
Používáte elektřinu k vytápění nebo ohřevu vody?
Pokud výše zmíněné údaje shrneme, můžeme předpokládat následující spotřebu elektrické energie...
Použití elektřiny v domácnosti – odhad vaší spotřeby (průměrné údaje):
osvětlení a elektrospotřebiče – přibližně 1 100 kWh za osobu ročně;
vaření – přibližně 200 kWh za osobu ročně;
ohřev vody – přibližně 1 000 kWh za osobu ročně;
vytápění – přibližně 110 kWh za metr čtvereční ročně (nutné přizpůsobit regionu, ve kterém žijete, izolaci, vašim zvykům).
Online kalkulačka provádí výpočet spotřeby a ceny elektrické energie. Stačí zadat příkon nebo spotřebu elektřiny daného přístroje. S její pomocí se dá vypočítat například spotřeba elektřiny lednice.
Zmiňovala jste nebezpečí houbových chorob. Už nějaké hrozí?
Ano, je to dáno zvyšujícími se teplotami. Ale nežli budu konkrétní, musím se nejprve trošku věnovat filozofii přístupu pěstitele k přírodě a k jeho vinici. Ten může být trojí. Ten první přístup – klasické pěstování – známe dlouho a také jsme ho dlouhé desítky let plánovaného hospodářství uplatňovali. Spočívá v názoru, že chci od révy co nejvíce a v pokud možno slušné kvalitě a vliv takovéhoto konání na prostředí mě nezajímá. V tomto případě se hnojí až přemrštěnými dávkami hnojiv. Ochranné prostředky proti chorobám a škůdcům se se používají preventivně v pravidelných intervalech. Důsledkem je, že půda je zásobena některými živinami v nadbytku a obsahuje rezidua (zbytky) postřiků. Tím je potlačován přirozený život organizmů žijících v půdě, od mikroorganizmů až větší organizmy, jako jsou například žížaly. Užiteční tvorové se pak stěhují jinam, kde je méně „jedů“.
Druhý filozofický přístup k chování pěstitele ve vinici je „integrovaná produkce“. Slovník cizích slov tento výraz vysvětluje jako spojování prvků v harmonický celek. Těmi prvky v případě vinice je omezení přehnojování půd, náhrada černého úhoru nějakým způsobem ozelenění. Tím se omezí počet průjezdů těžké mechanizace. Když se totiž jezdí v meziřadích vždy na stejných místech, vede to k vytváření utužené podorniční vrstvy, neprůchodné pro vodu a vzduch. O práci s půdou jsme už ostatně mluvili. Dalším velevýznamným počinem při této filozofii je omezení chemických přípravků proti chorobám a škůdcům. Moudrý pěstitel aplikuje přípravky jen tehdy, kdy to má smysl! Tedy rozhodně ne preventivně desetkrát až dvanáctkrát ročně, jak se dělo při klasickém pěstování, ale jen tehdy, kdy přípravek bude mít na co působit. A jsme u jádra věci integrovaného pěstování – tím je aplikace přípravků na ochranu rostlin podle aktuální potřeby. Jen tehdy totiž přípravek bude účinně působit. Tím se počet aplikovaných dávek podstatně sníží, pěstitel se chová k prostředí šetrně a příroda se mu odmění spoluprací, především v boji proti škůdcům: ve vinici se usadí predátoři, kteří se budou na likvidaci škůdců spolupodílet.
Třetím principem je „bioprodukce“, kdy jsou chemické přípravky nahrazovány aplikací různých přírodních produktů a výsledkem jsou biohrozny. Ale zde musím upozornit, že tento postup není jednoduchý a nemusí být vždy úspěšný. Myslím, že běžnému zahrádkáři naprosto postačí dodržovat pravidla integrovaného pěstování, jak mu to jeho prostředky a schopnosti dovolí.
Jsou proti houbovým chorobám některé odrůdy odolnější?
To je výborná otázka. Velmi obecně lze říci, že odrůdy s jemnějšími pletivy, především v listech, podlehnou h